

Upper Hudson River PCB Modeling System Overview – PCB Fate and Transport Model

Presented by Peter H. Israelsson - PCB Fate and Transport Technical Lead

Presented to LimnoTech, Ann Arbor, MI

July 14, 2010

PCB Fate and Transport Model

- Overview of model
 - Processes and theory
 - Structure and parameterizations
 - Assumptions
- Calibration summary
 - Short-term water column calibration
 - Long-term sediment calibration

Model Framework

What is Modeled?

- Two aggregate PCB species
 - "Di-" → Mono- and di-chlorinated PCBs
 - "Tri+" → PCBs with three or more chlorines
- Note that the 1999 Hudson Model simulated only Tri+, due to data limitations
- Each species is run as a stand-alone simulation
- The fate and transport of each species is modeled in both the water column and the sediment bed

AQFATE Model Code

- Embedded in Anchor QEA's modified version of EPA's Environmental Fluid Dynamics Code (EFDC)
- Part of the same general framework as the hydrodynamic and sediment transport models
 - However, Hudson-specific customizations have lead to separate source codes for hydro/sedtran and PCB fate
- Usually run in "external" mode
 - Using stored hydrodynamic and sediment transport output (i.e., linkage via "coupling files")
 - Improves run-time
- Simulates transport in both the water column and the sediment bed

PCB Fate Model Structure

- Same model grid as hydrodynamic and sediment transport models
- 2D water column overlies a 3D sediment bed
 - Water column is vertically integrated (i.e., 1 layer)
 - Sediment bed is vertically discretized
 - Ten 1-inch layers (initially)
 - No horizontal transport within bed (only vertical)
 - Separate transport equations for each, linked by the fluxes across the sediment-water interface

PCB Fate and Transport Processes*

*General description; not all processes are explicitly included in Hudson model

PCB Fate and Transport Processes*

*General description; not all processes are explicitly included in Hudson model

Equilibrium Partitioning

 Model assumes instantaneous equilibrium partitioning

$$r = K_p c$$

$$f_d = \frac{\theta}{\theta + K_p m} \qquad f_p = \frac{K_p m}{\theta + K_p m}$$

$$c = f_d c_T$$

$$p = f_p c_T$$

 Consequently, the state variable that the model tracks is total chemical concentration

$$c_T (= p + c = f_p c_T + f_d c_T)$$

 c_T = total chemical concentration (M/L³)

= dissolved chemical concentration (M/L³)

r = particulate chemical concentration (M/M)

p = particulate chemical concentration (M/L³)

 K_D = partition coefficient (L³/M)

 $m = \text{concentration of solids } (M/L^3)$

 f_p = particulate fraction

 f_d = dissolved fraction

 θ = porosity

Governing Equations

• Transport in water column (2D vertically averaged)

$$\frac{\partial c_T}{\partial t} = \frac{\partial}{\partial x} \left(E_x \frac{\partial c_T}{\partial x} \right) + \frac{\partial}{\partial y} \left(E_y \frac{\partial c_T}{\partial y} \right) - \frac{\partial u_x c_T}{\partial x} - \frac{\partial u_y c_T}{\partial y} - \frac{D_{tot}}{hm} \left(f_p c_T \right) \pm S$$

 c_T = total chemical concentration h = depth of water column*

E = dispersion coefficient** m = concentration of solids*

u = velocity* $f_D = \text{particulate fraction}$

 D_{tot} = depositional flux of solids*

S = other sources and sinks

(e.g., erosion, volatilization, diffusive exchange with sediments)**

*Provided directly by hydrodynamic or sediment transport model output **Calculated from hydrodynamic or sediment transport model output

Governing Equations

Vertical transport within sediment bed (1D)

$$\frac{\partial c_T}{\partial t} = \frac{\partial}{\partial z} \left(E_p \frac{\partial p}{\partial z} \right) + \frac{\partial}{\partial z} \left[E_d \frac{\partial (c + c_{dom})}{\partial z} \right] - \frac{\partial y_z(c + c_{dom})}{\partial z} \pm S_b$$

 c_T = total chemical concentration

c = dissolved chemical concentration

 c_{dom} = concentration of chemical bound to DOM (neglected)

 E_D = dispersion coefficient (e.g., particle mixing due to bioturbation)

 E_d = diffusion coefficient (molecular)

u = groundwater velocity (neglected)

 f_p = particulate fraction

 S_b = sources and sinks**

(e.g., diffusive exchange with water column, erosion, deposition)

**Calculated from hydrodynamic or sediment transport model output

PCB Transport Processes

- Advection and diffusion in the water column
- Diffusive transport within sediment bed
- Sediment mixing within bed
- Diffusive transport across sediment-water interface
- Sediment erosion and deposition

Advection and Diffusion in the Water Column

- Calculated using the EFDC scalar transport solver
 - Combines information from hydrodynamic model with PCB source and sink terms (described below) to solve the governing transport equation
 - PCB fate model uses same transport algorithm as the sediment transport model

Diffusive Transport Within the Sediment Bed

 Diffusive flux (J) between adjacent sediment bed layers i and j

$$J_{i,j} = \frac{D_{S}}{l_{i,j}} [(c + c_{dom})_{i} - (c + c_{dom})_{j}]$$

- Pore-water molecular diffusion coefficient (here D_s)
 - Estimated for each species and corrected for sediment bed porosity (tortuosity)
- Mixing length $l_{i,j}$ taken as the thickness of bed layers (1")

PCB Flux Associated with Sediment Mixing

- Analogous to diffusive mass transport, but
 - Applied to particulate fraction, rather than dissolved
 - Particle mixing (or dispersion) coefficient is a property of the sediment bed and biological activity within, not the chemical species
- Key parameters: depth and intensity of particle mixing
 - Treated here as calibration parameters, guided by literature values
- Combined transport via sediment mixing and molecular diffusion handled by the bed submodel, along with PCB source/sinks to top sediment layer

Diffusive Transport Across the Sediment-Water Interface

 Transfer of PCBs between sediment porewater and water column

$$J_D = k_f [(c + c t_{lom})_s - (c + c t_{lom})_w]$$

- Constitutes either a concurrent sink to top sediment bed layer and source to water column, or vice versa
- Magnitude of exchange specified by a sedimentwater mass transfer coefficient, k_f
 - K_f represents combined effect of multiple processes

Diffusive Transport Across the Sediment-Water Interface

- Multiple mechanisms may contribute to k_f
 - Molecular diffusion
 - Transport of collodial material
 - Groundwater advection
 - Bioturbation
 - Bottom roughness-induced exchange
- Estimated from the observed increases in PCB concentration across the Thompson Island Pool (TIP, Reach 8) during low to moderate flows

Estimation of k_f

• Used 2004-2008 BMP data to calculate k_f for Reach 8 for Di- and Tri+ independently:

$$k_f = \frac{Q_{FE}(C_{T_{TID}} - C_{T_{RI}})}{A_S(C + C_{dom})_s}$$

- Resulting dataset exhibited both flow and seasonal dependence
- We derived seasonally variable functions which relate k_f to the flow at Fort Edward
 - Allows for k_f to be specified using daily flow data

Estimation of k_f

Formally, let: $K_f = \langle K_f \rangle + K_f^2$ $Q = \langle Q \rangle + Q^2$

Assume:

$$\langle K_f \rangle = f(t)$$

 $K_f' = f(Q')$

Note:

Least square regression lines indicate trend in deviation from the mean vs. flow in high flow (5000 – 10,000 cfs) and low flow (<5000 cfs) during warm and cold months.

 K_f held constant above 10,000 cfs

Example of Model k_fInputs

Sediment-water Mass Transfer Coefficients Used in Calibration Simulations, Year 2004

Solid line represents calculated daily k_f values; dashed line represents an interpolation of monthly average k_f values calculated from the data

PCB Flux via Sediment Erosion and Deposition

- PCB fluxes calculated by combining sediment fluxes with predicted PCB conc. on particles
 - Depositional flux
 - PCB source to the top sediment bed layer and sink to water column
 - Concentrations from equilibrium partitioning in the water column
 - Erosion flux
 - PCB sink to the top sediment bed layer and source to water column
 - Concentrations from equilibrium partitioning in the sediment bed

PCB Flux via Sediment Erosion and Deposition

- Erosional flux adjusted to account for resistantly sorbed PCB phase in an approximate manner
 - During calibration, chemical erosion flux of sediment classes 2, 3, and 4 was reduced by 50%
 - Past studies suggest that ~50% of sediment-bound PCBs desorb on timescales > 1 week (e.g., Carroll 1994)
 - Represents PCB phase with desorption timescales much greater than average resuspension time of coarser particles size classes (~1 to 3 hours or less)
- Will be discussed further in context of calibration results

PCB Transfer and Reaction Processes

- Adsorption
- Volatilization
- Dechlorination/Biodegradation

Adsorption – K_{oc} Values

- Partitioning in sediments
 - Tri+ K_{oc} = $10^{5.55}$
 - Di- $K_{oc} = 10^{4.72}$
 - Based on 1991 GE sampling program measurements of porewater concentration
- Partitioning in water column
 - Tri+ K_{oc} = $10^{5.65}$
 - Di- $K_{oc} = 10^{4.74}$
 - Based on 1995 USEPA Phase 2 water column data
- Temperature dependent effects included for both (see report for details)

Volatilization

- Rate of volatilization depends on
 - Mass transfer coefficient at air-water interface
 - Freely dissolved PCB concentrations in the water column
 - Henry's Law "constants"
 - Estimated from data from Brunner et al. (1990) for each species
- PCB sink due to volatilization

$$S_v = \frac{k_L}{h} \left(c - \frac{c_{air}}{H} \right)$$

Volatilization

Mass transfer modeled via standard two-film theory

 $k_L = \frac{k_g k_l}{k_g + \frac{k_l}{H}}$

• For PCBs, overall transfer dominated by liquid film transfer, k_l , which was specified via the velocity-dependent O'Connor Dobbins equation

$$k_l = \sqrt{\frac{D_W U}{h}}$$

• Temperature dependence of k_l was approximated via an Arrhenius equation (see report for details)

Dechlorination / Biodegradation

- Loss of Tri+ PCBs due to dechlorination and concurrent gain of Di- PCBs was not simulated
 - Post-1977 dechlorination assumed to have an minor impact on Tri+ concentrations within sediment deposited prior to 1977
 - Sediments deposited after 1977 are relatively low (~1 to 50 ppm), which may impede dechlorination
 - Based upon the observed relationship between dechlorination rate and total PCB concentration
 - See report for details
- Di- PCB also assumed negligible

PCB Fate Model Calibration

- Two calibration periods
 - 1/1/2004 to 12/31/2008
 - All 8 reaches
 - Semantics: "the calibration"
 - 5/1/1977 to 12/31/2003
 - Reach 8 only
 - Semantics: "the long-term calibration"
- Approach
 - 2004 to 2008 period was used to calibrate model's prediction of water column trends
 - 1977 to 2003 period was used to calibrate model's prediction of sediment trends

Model Setup for Water Column Calibration

- Initial conditions
 - Sediment PCB concentrations
 - Bed properties (static)*
 - Suspended particle properties (static)*
- Temperature (cyclic)*
- Boundary conditions
 - PCB loads

*These apply to long-term calibration period as well, but will be discussed here

Initial Conditions

- PCB concentrations
 - PCB data from SSAP cores
 - Tri+ concentrations determined from Tri+ to Aroclor correlation

Tri + PCB = 0.13[Aroclor1221] + 0.94[Aroclor1242 + Aroclor1254]

- [Di-] = [Total PCB] [Tri+]
 - Because method was biased high at low [Di-], a 0.75 correction factor of 0.75 was applied to areas with [Di-] less than 133 mg/kg
- To calculate grid cell PCB concentrations, sediment PCB data was mapped into zones

Initial Conditions

- Sediment PCB Zones
 - In Reach 8 (TIP)
 - Zones based on primary sediment types and spatial patterns of PCB concentrations
 - In Reaches 7 to 1
 - Zones were based on dredge and non-dredge areas
 - Non-dredge areas were further divided by sediment type
 - Model grid cells were assigned the PCB concentrations of the dominant zone within their boundaries

Sediment Zone Initial Conditions

Sediment Characteristics

- 4 size classes as in sediment transport model
- Sediment bed properties
 - Spatial distribution of particle size classes provided by sediment transport model (i.e., bed composition)
 - Reach-specific dry bulk densities as in sediment transport model
 - f_{oc} = 0.026 (cohesive) and 0.021 (non-cohesive)
 - uniform across all sediment size classes
- Suspended sediment properties
 - TSS concentrations from sediment transport model
 - f_{oc} set to 0.1 for all size classes based on BMP data

Temperature Time Series

- Repeating annual temperature cycle based on weekly historical monitoring data
- Used in adjusting temperature dependent variables (partition coefficient, volatilization mass transfer)

Boundary Conditions for 2004 - 2008 Calibration

- PCB load at upstream boundary of Reach 8
 - Specified *via* load flow rating curves based on 2004 2008 BMP data at Roger's Island
 - On days when data not available
- For downstream reaches, boundary conditions were taken from model predictions in the upstream reach

Boundary Conditions for 2004 - 2008

Calibration

 PCB load-flow rating curves based on BMP data (2004-2008)

- Measurements from Roger's Island
- Excludes some anomalous 2008 data

PCB Fate Model Water Column Calibration

- Simulation period: 1/1/2004 to 12/31/2008
- Approach
 - Calibrated to routine (weekly) and high-flow event water column PCB data
 - Calibration adjustments
 - Minor adjustment of sediment-water mass transfer coefficient, k_f
 - Uniform scaling of 1.1 for Di- and 1.3 for Tri+, across all reaches
 - Adjustment to sediment transport model
 - Neglected erosion from the non-cohesive bed at flows less than 10,000 cfs at Fort Edward, i.e., twice the long-term mean
 - Adjustment of chemical erosion flux for coarser particle sizes, to approximate impact of a resistant phase

Calibration: TID PCB Concentrations

Calibration: Waterford PCB Concentrations

Calibration: TID PCB Load

Calibration: Waterford PCB Load

Calibration: TID Cumulative Di- PCB Load

Calibration: TID Cumulative Tri+ PCB Load

Calibration: Waterford Cumulative Di- PCB Load

Calibration: Waterford Cumulative Tri+ PCB Load

Calibration: Waterford Daily PCB Load (low to moderate flows)

Comparison of days for which Fort Edward flow was less than 10,000 cfs

Calibration: Waterford Daily PCB Load (high flow)

Comparison of days for which Fort Edward flow was greater than 10,000 cfs

PCB Fate Model Calibration Results

- Model to data agreement
 - PCB concentration and load time series at TID, Schuylerville, Stillwater, and Waterford
 - Low- to moderate-flow (< 10,000 cfs at Fort Edward)
 - Generally favorable fit at each location
 - Somewhat better for Tri+ than Di-
 - High-flow conditions (> 10,000 cfs at Fort Edward)
 - Data is sparse for comparison at TID, Schuylerville, and Stillwater
 - At Waterford, favorable agreement
 - Somewhat better for Tri+ than Di-, which shows slight high bias

PCB Fate Model Calibration Results

- Model to data agreement
 - PCB cumulative loads
 - Generally favorable agreement, although comparisons are complicated by sparse data during high flow events
 - Notably at TID, Schuylerville and Stillwater
 - Causes model to yield higher cumulative load than data in some cases
 - Relative trends in cumulative loading across different stations is consistent with the data
 - See report for more details

Long-Term Calibration

- Approach
 - 27-year simulation of Tri+ PCBs in Reach 8
 - May 1, 1977 to December 31, 2003
 - Historically, analytical methods only accurately quantified Tri+ PCBs, so Di- PCBs not simulated here due to lack of data
 - Upstream boundary PCB loads
 - 1977 to March 1991: Estimated from USGS data (see QEA 1999 for details)
 - April 1991 through December 2003: Estimated from GE data and USGS flows, linearly interpolating between data gaps

Long-Term Calibration

- Approach (cont'd)
 - Sediment initial conditions
 - Estimated from 1977 NYSDEC sampling program
 - Tri+ PCB concentration profiles estimated from Aroclor measurements in top 12 inches of sediment after binning by zone
 - Model calibration
 - Depth and intensity of bed mixing adjusted
 - Calibrated to rate of decline in surface sediments over 1977 to 2003 period
 - Based on TIP-wide average and zone-by-zone comparisons
 - Select results follow here; see report for full results

Long-term Calibration Results – Average TIP Surface Sediment Tri+ PCB Concentrations

Long-term Calibration Results – TIP Surface Sediment [Tri+ PCB] in Select 1977 Sediment Zones

Long-term Calibration Results – TIP Surface Sediment [Tri+ PCB] in Select 1990s Sediment Zones

Long-Term Calibration Results

- Reasonable model-data agreement achieved by setting bed mixing to 2 x 10⁻⁷ cm²/s over
 - The top 6 layers (~6") of cohesive sediment bed
 - The top 2 layers (~2") of non-cohesive sediment bed
- Note uncertainties in data sets
 - TIP-wide averages are sensitive to data coverage
 - SSAP data set had 3,000+ sediment cores in TIP, but prior sampling events had poorer coverage
 - For example, 1990's TIP-wide averages are highly uncertain
- In general, model tends to under-predict decline of non-cohesive sediment concentrations, and therefore under-predict overall decline

Long-Term Calibration Results

- Predicted water column Tri+ concentrations were also compared to measured data
 - October 1997 through 2003 only (pre-1997 data not representative of the cross-sectional average)
- Model generally reproduces seasonal trend in Tri+ PCB concentrations at TID, tending to slightly over-predict absolute concentrations
 - Consistent with an under-prediction of sediment concentration decline
 - Serves as a reasonable validation of water column calibration parameters

Long-term Calibration Results – TIP <u>Water Column Tri+ PCB Concentrations</u>

PCB Fate Model – Calibration Conclusions

- Water column calibration
 - Taken as a whole, calibration results indicate favorable model-data agreement across multiple metrics
 - Including PCB load predictions across a range of flow regimes and stations
- Sediment bed calibration
 - Calibration results indicate that the large-scale trend of declining surface sediment concentrations in Reach 8 is captured, though perhaps under-predicted
 - Zone-by-zone comparisons are variable but generally reasonable, given uncertainty in both data-based concentration estimates as well as model parameters

PCB Fate Model – Ongoing work

- Sensitivity analysis on model calibration parameters and assumptions
- Application of model to simulate 2009 dredging
 - Evaluating model performance in detail and possible refinements to the approach taken to date
 - To be covered Thursday afternoon, 7/15
- Application of model to simulate Phase 2 dredging
 - To be covered Thursday afternoon, 7/15

